A Transfinite Knuth-Bendix Order for Lambda-Free Higher-Order Terms

نویسندگان

  • Heiko Becker
  • Jasmin Christian Blanchette
  • Uwe Waldmann
  • Daniel Wand
چکیده

We generalize the Knuth–Bendix order (KBO) to higher-order terms without λ-abstraction. The restriction of this new order to first-order terms coincides with the traditional KBO. The order has many useful properties, including transitivity, the subterm property, compatibility with contexts (monotonicity), stability under substitution, and well-foundedness. Transfinite weights and argument coefficients can also be supported. The order appears promising as the basis of a higher-order superposition calculus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Transfinite Knuth-Bendix Orders

In this paper we discuss the recently introduced transfinite Knuth-Bendix orders. We prove that any such order with finite subterm coefficients and for a finite signature is equivalent to an order using ordinals below ω, that is, finite sequences of natural numbers of a fixed length. We show that this result does not hold when subterm coefficients are infinite. However, we prove that in this ge...

متن کامل

Superposition for Lambda-Free Higher-Order Logic

We introduce refutationally complete superposition calculi for intentional and extensional λ-free higher-order logic, a formalism that allows partial application and applied variables. The intentional variants perfectly coincide with standard superposition on first-order clauses. The calculi are parameterized by a well-founded term order that need not be compatible with arguments, making it pos...

متن کامل

Well-Founded Recursive Relations

We give a short constructive proof of the fact that certain binary relations > are well-founded, given a lifting à la Ferreira-Zantema and a wellfounded relation .. This construction generalizes several variants of the recursive path ordering on terms and of the Knuth-Bendix ordering. It also applies to other domains, of graphs, of infinite terms, of word and tree automata notably. We then exte...

متن کامل

Higher-Order Rewrite Systems and Their Confluence

We introduce Higher-Order Rewrite Systems (HRS) which extend term rewriting to-terms. HRS can describe computations on arbitrary terms with bound variables. We show that rewriting is closely related to undirected equational reasoning , and extend three connuence results from term rewriting to HRS: the critical pair lemma by Knuth and Bendix, connuence of rewriting modulo equations a la Huet, an...

متن کامل

Higher-order Rewrite Systems and Their Connuence

We study Higher-Order Rewrite Systems (HRSs) which extend term rewriting to-terms. HRSs can describe computations over terms with bound variables. We show that rewriting with HRSs is closely related to undirected equational reasoning. We deene Pattern Rewrite Systems (PRSs) as a special case of HRSs and extend three connuence results from term rewriting to PRSs: the critical pair lemma by Knuth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017